Mengenal Identitas Trigonometri Dasar
Identitas trigonometri bentuknya sangat banyak, dari bentuk yang sederhana sampai yang sangat indah. Bentuk-bentuk identitas trigonometri itu berasal dari sumber yang sama, hanya saja banyak orang-orang kreatif sehingga bentuk identitas trigonometri terlihat lebih indah dari bentuk sebelumnya.
Mari kita coba diskusikan bentuk identitas trigonometri dasar,
Dari sebuah segitiga $ABC$ siku-siku di $C$, kita misalkan panjang sisi $BC=a$, $AC=b$, dan $AB=c$. Untuk sudutnya kita pakai sudut $ABC$ kita misalkan besarnya sebesar $ \beta $.
Deskripsi diatas dalam gambar bisa kita ilustrasikan sebagai berikut;
- $ sin\ \beta= \frac{b}{c} $
- $ cos\ \beta= \frac{a}{c} $
- $ tan\ \beta= \frac{b}{a} $
- $ cosec\ \beta= \frac{c}{b} $
- $ sec\ \beta= \frac{c}{a} $
- $ cotan\ \beta= \frac{a}{b} $
- $ \frac{1}{sin\ \beta}={\frac{1}{\frac{b}{c}}=\frac{c}{b}}=cosec\ \beta$ atau $ \frac{1}{sin\ \beta}=cosec\ \beta $
- $ \frac{1}{cos\ \beta}={\frac{1}{\frac{a}{c}}=\frac{c}{a}}=sec\ \beta$ atau $ \frac{1}{cos\ \beta}=sec\ \beta $
- $ \frac{1}{tan\ \beta}={\frac{1}{\frac{b}{a}}=\frac{a}{b}}=cotan\ \beta$ atau $ \frac{1}{cotan\ \beta}=tan\ \beta $
- $ \frac{sin\ \beta}{cos\ \beta}={\frac{\frac{b}{c}}{\frac{a}{c}}=\frac{b}{a}}=tan\ \beta$ atau $ \frac{cos\ \beta}{sin\ \beta}=cotan\ \beta$
$ BC^{2}+AC^{2}=AB^{2}$
$ a^{2}+b^{2}=c^{2}$
Jika kedua ruas persamaan diatas sama-sama kita bagikan dengan $ c^{2}$ maka akan kita peroleh persamaan:
$ \frac{a^{2}}{c^{2}}+\frac{b^{2}}{c^{2}}=\frac{c^{2}}{c^{2}}$
$ \left (\frac{a}{c} \right )^{2}+\left (\frac{b}{c} \right )^{2}=1$
$ \left (cos\ \beta \right )^{2}+\left (sin\ \beta \right )^{2}=1$
$ cos^{2} \beta+sin^{2} \beta=1$
Kesimpulan:
Bentuk diatas dapat dipakai kebentuk yang lain, misalnya:
- $ sin^{2} \beta+cos^{2} \beta=1$
- $ sin^{2} \beta=1-cos^{2} \beta $
- $ cos^{2} \beta=1-sin^{2} \beta $
- $ sin^{2} A+cos^{2} A=1 $
- $ sin^{2} 355^{\circ}+cos^{2} 355^{\circ}=1 $
- $ sin^{2} p+cos^{2} p=1 $
$ \frac{a^{2}}{a^{2}}+\frac{b^{2}}{a^{2}}=\frac{c^{2}}{a^{2}}$
$ 1+\left (\frac{b}{a} \right )^{2}=\left (\frac{c}{a} \right )^{2}$
$ 1+\left (tan\ \beta \right )^{2}=\left (sec\ \beta \right )^{2}$
$ 1+tan^{2} \beta=sec^{2} \beta$
Kesimpulan:
Berikutnya identitas trigonometri akan kita dapat jika persamaan $ a^{2}+b^{2}=c^{2}$ kita bagi dengan $ b^{2}$, persamaan yang kita peroleh adalah;
- $ 1+tan^{2} \beta=sec^{2} \beta$
- $ tan^{2} \beta=sec^{2} \beta-1$
- $ 1=sec^{2} \beta-tan^{2} \beta$
$ \frac{a^{2}}{b^{2}}+\frac{b^{2}}{b^{2}}=\frac{c^{2}}{b^{2}}$
$ \left (\frac{a}{b} \right )^{2}+1=\left (\frac{c}{b} \right )^{2}$
$ \left (cotan\ \beta \right )^{2}+1=\left (cosec\ \beta \right )^{2}$
$ cotan^{2} \beta+1=cosec^{2} \beta$
Kesimpulan:
- $ cotan^{2} \beta+1=cosec^{2} \beta$
- $ 1=cosec^{2} \beta-cotan^{2} \beta $
- $ cotan^{2} \beta=cosec^{2} \beta-1$
Bentuk identitas trigonometri dasar diataslah yang dimodifikasi sehingga soal identitas trigonometri itu menjadi masalah. Berikut satu soal latihan yang menggunakan identitas trigonometri dasar, yang diambil dari soal Ujian Masuk Universitas Gajah Mada pada tahun 2009 (π Soal Lengkap π).
Dari soal ada beberapa data yang bisa kita ambil dan kembangkan yaitu:
$ sin\ A =\sqrt{2pq}$
ruas kiri dan kanan persamaan diatas sama-sama dikuadratkan menjadi $ sin^{2}A=2pq$.
Berikutnya diketahui $ tan\ A=\frac{\sqrt{2pq}}{p-q}$
$ \frac{sin\ A}{cos\ A}=\frac{\sqrt{2pq}}{p-q}$
$ \frac{sin\ A}{cos\ A}=\frac{sin\ A}{p-q}$
diperoleh persamaan $ cos\ A=p-q$
Ruas kiri dan kanan persamaan $ cos\ A=p-q$ sama-sama dikuadratkan, menjadi:
$ \left (p-q \right )^{2}=cos^{2}A$
$ p^{2}+q^{2}-2pq=cos^{2}A$
$ p^{2}+q^{2}=cos^{2}+2pqA$
$ p^{2}+q^{2}=cos^{2}+sin^{2}A$
$ p^{2}+q^{2}=1$
Jawaban yang diinginkan pada soal adalah $1\ (E)$
Anda punya alternatif penyelesaian yang lain atau sesuatu hal ingin ditanyakan, mari berbagi dan diskusi.
Punya anak atau saudara yang duduk di bangku SD atau SMP, coba berikan permainan tangram siapa tahu dia suka. Hasil kreativitas anak dari permainan tangram dapat diliha pada Youtube
Via : http://www.foldersoal.com
0 Response to "Mengenal Identitas Trigonometri Dasar"
Post a Comment